OSOS

OSOS

´╗┐Bell-LaPadula model
The Bell-LaPadula Model (abbreviated BLP) is a state machine model used for enforcing access control in government and military applications. It was developed by David Elliott Bell and Leonard J. LaPadula, subsequent to strong guidance from Roger R. Schell to formalize the U.S. Department of Defense (DoD) multilevel security (MLS) policy. The model is a formal state transition model of computer security policy that describes a set of access control rules which use security labels on objects and clearances for subjects. Security labels range from the most sensitive (e.g."Top Secret"), down to the least sensitive (e.g., "Unclassified" or "Public").
The Bell-LaPadula model is an example of a model where there is no clear distinction of protection and security.
Features
The Bell-LaPadula model focuses on data confidentiality and controlled access to classified information, in contrast to the Biba Integrity Model which describes rules for the protection of data integrity. In this formal model, the entities in an information system are divided into subjects and objects. The notion of a "secure state" is defined, and it is proven that each state transition preserves security by moving from secure state to secure state, thereby inductively proving that the system satisfies the security objectives of the model. The Bell-LaPadula model is built on the concept of a state machine with a set of allowable states in a computer network system. The transition from one state to another state is defined by transition functions.
A system state is defined to be "secure" if the only permitted access modes of subjects to objects are in accordance with a security policy. To determine whether a specific access mode is allowed, the clearance of a subject is compared to the classification of the object (more precisely, to the combination of classification and set of compartments, making up the security level) to determine if the subject is authorized for the...