TEENLINK

TEENLINK

X-linked recessive inheritance
From Wikipedia, the free encyclopedia

X-linked recessive inheritance is a mode of inheritance in which a mutation in a gene on the X chromosome causes the phenotype to be expressed (1) in males (who are necessarily homozygous for the gene mutation because they have only one X chromosome) and (2) in females who are homozygous for the gene mutation (i.e., they have a copy of the gene mutation on each of their two X chromosomes).
X-linked inheritance means that the gene causing the trait or the disorder is located on the X chromosome. Females have two X chromosomes, while males have one X and one Y chromosome. Carrier females who have only one copy of the mutation do not usually express the phenotype, although differences in X chromosome inactivation can lead to varying degrees of clinical expression in carrier females since some cells will express one X allele and some will express the other. The current estimate of sequenced X-linked genes is 499 and the total including vaguely defined traits is 983.[1]
Some scholars have suggested discontinuing the terms dominant and recessive when referring to X-linked inheritance due to the multiple mechanisms that can result in the expression of X-linked traits in females, which include cell autonomous expression, skewed X-inactivation, clonal expansion, and somatic mosaicism.[2]
Contents
1 Sex differences In phenotype/genotypes and frequency
2 Examples
2.1 Most common
2.2 Less common disorders
3 See also
4 External links
5 References
Sex differences In phenotype/genotypes and frequency
In humans, generally "men are affected and women are carriers" for two reasons. The first is the simple statistical fact that if the X-chromosomes is a population that carry a particular X-linked mutation at a frequency of 'f' (for example, 1%) then that will be the frequency that men are likely to express the mutation (since they have only one X), while women will express it at a frequency of f2...